Measurement of the photon structure function with the L3 detector at LEP

Philippe Mermod SUBATECH, 31st May 2007

How can we observe photonphoton interactions ?

- 1930 (Hugues and Jauncey) attempt to measure yy → yy
 → cross section far too small
- Cross section for production of charged pair is large enough to be measured, but a source of highenergy photons is needed
- Fermi (1924), Weiszäcker (1933) and Williams (1934) proposed to use charged particles as source of photons → virtual photon beams

Experimental observations of two-photon reactions

- 1970 e⁺e⁻ → e⁺e⁻e⁺e⁻ VEPP-II (Novosibirsk)
- **1972** $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$ Adone (Frascati)
- **1979** $e^+e^- \rightarrow e^+e^-\eta'$ SPEAR (SLAC)
- •
- Nowadays mostly high-energy e⁺e⁻ colliders such as LEP and B-factories
- Some measurements at RHIC (ultra peripheral collisions), one at Tevatron

Large electron-positron collider (1989-2000)

LEP physics

Two-photon cross section increases as $\sigma \sim \ln^3(\sqrt{s})$

- Background
- Physics topic in itself :
 - Study of the photon
 - QED and QCD
 - Resonances...

Two-photon physics

Two-photon kinematics

Two-photon invariant mass W : $W^2 = (q_1 + q_2)^2$ $W^2_{vis} = \sum_{vis} E_i^2 - p_i^2$ \rightarrow Photon virtuality Q² : $Q_i^2 = -q_i^2 = 2E_iE_i'(1-\cos\theta_i)$ Variables x and y : $x = Q_1^2/2q_1q_2$ $y = q_1q_2/p_1q_2$

Single-tag : $Q_1^2 = Q^2$, $Q_2^2 \approx 0$

 \rightarrow x can be interpreted as the momentum fraction of the struck parton

$$W^2 = Q^2(1/x-1)$$

Single-tag : study the partonic content of the photon

Analogy to deep inelastic scattering :

- $\sigma_{yy^*}(x,Q^2) \approx 4\pi^2 \alpha_{em}/Q^2 \cdot F_2^{\gamma}(x,Q^2)$
- $F_{2}^{\gamma}(x,Q^{2}) = x \sum e_{i}^{2}q_{i}^{\gamma}(x,Q^{2})$

The L3 detector

Event selection and MC

Event selection and MC

W (or x) distribution : unfolding

Physics at the level of yy → hadrons

Photon flux :

analytical program GALUGA

$$\sigma_{ee} = \int (L_{\pi} F_{\pi} \sigma_{\pi} + ...) dQ^2 dW$$

Three approaches :

- Ratio to QED processes ($e^+e^- \rightarrow e^+e^- \mu^+\mu^-$)
- Luminosity funct. $\rightarrow \sigma_{yy}(Q^2,W)$
- Direct extraction of $F_2^{\gamma}(Q^2,x)$

Ratio to QED processes

The photon behaves as a point-like particle for high Q² and low W

Photon structure function F_2^{γ}

L3 Coll., Phys. Lett. B 622, 249 (2005)

Experimental determination of F_2^{γ}

Overall agreement with QCD predictions

Experimental determination of F_2^{γ}

The Q² range is not large enough to constrain the input parton density functions $q_i(x,Q^2)$

Conclusions on the photon structure measurement

- F_2^{γ} is measured at LEP with the L3 detector in centerof-mass energies $189 \le \sqrt{s} \le 209$ GeV with $11 \le Q^2 \le 34$ GeV², $0.006 \le x \le 0.556$
- The data at high Q² are consistent with predictions from direct processes
- At small x (high W) we observe an increasing contribution from resolved processes, revealing the gluonic content of the photon
- The data are better reproduced by the higher-order parton density functions of GRV

Remarks and outlook

- Systematic uncertainties dominate, due to the poor measurement of W and the insufficient MC description
 - > No real need for better statistics in our Q² range

On the other hand :

- Data at higher Q²
- Exclusive production (resonances, exotics...)
- Heavy flavour production (next slide)

- > need higher energies → LHC, ILC (final slide)

The future of two-photon physics

LHC (2008)
proton-proton
14 TeV

 ILC (2015) electron-positron
500 GeV

